Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0290929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319944

RESUMO

Honeybees require an efficient immune system to defend against microbial pathogens. The American foulbrood pathogen, Paenibacillus larvae, is lethal to honeybees and one of the main causes of colony collapse. This study investigated the immune responses of Apis mellifera and Apis cerana honeybees against the bacterial pathogen P. larvae. Both species of honeybee larvae exhibited significant mortality even at 102 103 cfu/mL of P. larvae by diet-feeding, although A. mellifera appeared to be more tolerant to the bacterial pathogen than A. cerana. Upon bacterial infection, the two honeybee species expressed both cellular and humoral immune responses. Hemocytes of both species exhibited characteristic spreading behaviors, accompanied by cytoskeletal extension along with F-actin growth, and formed nodules. Larvae of both species also expressed an antimicrobial peptide called apolipophorin III (ApoLpIII) in response to bacterial infection. However, these immune responses were significantly suppressed by a specific inhibitor to phospholipase A2 (PLA2). Each honeybee genome encodes four PLA2 genes (PLA2A ~ PLA2D), representing four orthologous combinations between the two species. In response to P. larvae infection, both species significantly up-regulated PLA2 enzyme activities and the expression of all four PLA2 genes. To determine the roles of the four PLA2s in the immune responses, RNA interference (RNAi) was performed by injecting gene-specific double stranded RNAs (dsRNAs). All four RNAi treatments significantly suppressed the immune responses, and specific inhibition of the two secretory PLA2s (PLA2A and PLA2B) potently suppressed nodule formation and ApoLpIII expression. These results demonstrate the cellular and humoral immune responses of A. mellifera and A. cerana against P. larvae. This study suggests that eicosanoids play a crucial role in mediating common immune responses in two closely related honeybees.


Assuntos
Infecções Bacterianas , Paenibacillus larvae , Abelhas , Animais , Paenibacillus larvae/fisiologia , Larva , Dieta , Fosfolipases A2
2.
Folia Microbiol (Praha) ; 69(2): 415-421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180723

RESUMO

Paenibacillus larvae and Melissococcus plutonius represent the most threatening bacterial diseases of honeybee (Apis mellifera)-American and European foulbrood, respectively. For efficient control of those diseases, rapid and accurate detection of the pathogens is crucial. Therefore, we developed a novel multiplex PCR method simultaneously detecting both pathogens. To design and optimize multiplex PCR reaction, four strains of P. larvae representing four ERIC genotypes I-IV (strain DSM 7030-ERIC I, DSM 25430-ERIC II, LMG 16252-ERIC III, DSM 3615-ERIC IV) were selected. Those strains were fully sequenced using long-read sequencing (Sequel I, Pacific Biosciences). For P. larvae, the multicopy insertion sequence IS256 identified in all genotypes of P. larvae was selected to provide high sensitivity. M. plutonius was detected by plasmid pMP1 sequence and the virulence verified by following detection of ETX/MTX2 toxin responsible for pore formation in the cell membrane. As an internal control, a gene encoding for major royal jelly protein 1 specific for honeybees was selected. The method was validated on 36 clinical specimens collected from the colonies suffering from American and European foulbrood in the Czech Republic. Based on the results, sensitivity of PCR was calculated to 93.75% and specificity to 100% for P. larvae diagnosed from hive debris and 100% sensitivity and specificity for honeybee workers and larval scales as well as for diseased brood infected by M. plutonius.


Assuntos
Enterococcaceae , Paenibacillus larvae , Paenibacillus , Abelhas/genética , Animais , Paenibacillus larvae/genética , Elementos de DNA Transponíveis , Larva/microbiologia , Plasmídeos/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Paenibacillus/genética
3.
Arch Razi Inst ; 78(3): 899-905, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-38028830

RESUMO

Four different propolis samples obtained from different regions of Iran were evaluated for their antibacterial effects against the bacterial agents responsible for two important honeybee diseases. Paenibacillus larvae (P. larvae) and Melissococcus plutonius (M. plutonius), as the etiological agents of American foulbrood (AFB) and European foulbrood (EFB) diseases, were subjected to propolis ethanolic extracts in the agar well diffusion assay. The minimum inhibitory concentrations (MIC) and the minimum bactericidal concentrations (MBC) of the antibacterial effects of the samples against the two indicator organisms were determined by the microdilution technique using different concentrations of the propolis extracts. Finally, the synergistic antibacterial actions of the mixed propolis samples were determined, and their MIC and MBC values were recorded. A two-way analysis of variance was used to evaluate correlations among the diameters of the inhibition zones, the bacterial agents, and the propolis extracts. Based on our results, three of the propolis samples showed significant antibacterial effects against P. larvae and M. plutonius during the agar well diffusion assay. Furthermore, the antibacterial capacity of the propolis samples, when mixed in equal proportions, was significantly enhanced, as indicated by the obtained MIC and MBC values. Approximately, 0.02 mg/mL of mixed propolis samples was required for inhibiting the growth of both pathogens. A direct correlation was observed between propolis concentrations and their antibacterial activity. The results of the study are conclusive of the significant antibacterial actions of Iranian propolis samples against the etiological agents of the mentioned honeybee diseases, suggesting their probable use as a safe biological agent to control AFB and EFB diseases.


Assuntos
Paenibacillus larvae , Própole , Abelhas , Animais , Estados Unidos , Própole/farmacologia , Ágar/farmacologia , Irã (Geográfico) , Antibacterianos/farmacologia , Larva
4.
Int. microbiol ; 26(4): 1087-1101, Nov. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-227494

RESUMO

Recent research shows that Dicranum species can be used to ameliorate the negative effects of honeybee bacterial diseases and that novel compounds isolated from these species may have the potential to treat bacterial diseases. This study aimed to investigate the efficacy of Dicranum polysetum Sw. against American Foulbrood using toxicity and larval model. The effectiveness of D. polysetum Sw. ethanol extract in combating AFB was investigated in vitro and in vivo. This study is important in finding an alternative treatment or prophylactic method to prevent American Foulbrood disease in honey bee colonies. Spore and vegetative forms of Paenibacillus larvae PB31B with ethanol extract of D. polysetum were tested on 2040 honey bee larvae under controlled conditions. Total phenolic and flavonoid contents of D. polysetum ethanol extracts were determined as 80.72 mg/GAE(Gallic acid equivalent) and 303.20 µg/mL, respectively. DPPH(2,2-diphenyl-1-picrylhydrazyl) radical scavenging percent inhibition value was calculated as 4.32%. In Spodoptera frugiperda (Sf9) and Lymantria dispar (LD652) cell lines, the cytotoxic activities of D. polysetum extract were below 20% at 50 µg/mL. The extract was shown to considerably decrease infection in the larvae, and the infection was clinically halted when the extract was administered during the first 24 h after spore contamination. The fact that the extract contains potent antimicrobial/antioxidant activity does not reduce larval viability and live weight, and does not interact with royal jelly is a promising development, particularly regarding its use to treat early-stage AFB infection.(AU)


Assuntos
Animais , Infecções Bacterianas , Paenibacillus larvae/fisiologia , Fenóis/metabolismo , Abelhas , Etanol/metabolismo , Larva/microbiologia , Microbiologia , Técnicas Microbiológicas , Fenóis/farmacologia , Estados Unidos
5.
J Vet Diagn Invest ; 35(6): 645-654, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37705301

RESUMO

American foulbrood (AFB) is an infectious disease of honey bee brood caused by the endospore-forming bacterium Paenibacillus larvae. P. larvae spores are resilient in the environment, thus colonies with clinical signs of AFB are often destroyed by burning to eradicate the causative agent. To prevent outbreaks of AFB, oxytetracycline metaphylaxis is widely used in North America, resulting in sustained selective pressure for oxytetracycline resistance in P. larvae. To determine if antimicrobial resistance (AMR) is present among P. larvae isolates from commercial beekeeping operations in Saskatchewan, Canada, we performed antimicrobial susceptibility testing of 718 P. larvae samples cultured from pooled, extracted honey collected from 52 beekeepers over a 2-y period, 2019 and 2020. We found that 65 of 718 (9%) P. larvae samples collected from 8 beekeepers were resistant to oxytetracycline with minimum inhibitory concentration (MIC) values of 64-256 µg/mL. Eight of 718 (1%) samples from 4 beekeepers had intermediate resistance to oxytetracycline (MIC: 4-8 µg/mL). Susceptibility testing for tylosin and lincomycin indicated that P. larvae in Saskatchewan continue to be susceptible to these antimicrobials (tylosin MIC: <1 µg/mL, lincomycin MIC: ≤2 µg/mL). Most oxytetracycline-resistant P. larvae samples were identified in northeastern Saskatchewan. Whole-genome sequence analysis identified the P. larvae-specific plasmid pMA67 with tetracycline-resistance gene tet(L) in 9 of 11 oxytetracycline-resistant P. larvae isolates sequenced. Our results highlight the advantage of using pooled, extracted honey as a surveillance tool for monitoring AMR in P. larvae.


Assuntos
Oxitetraciclina , Paenibacillus larvae , Abelhas , Estados Unidos , Animais , Oxitetraciclina/farmacologia , Paenibacillus larvae/genética , Tilosina/farmacologia , Saskatchewan/epidemiologia , Criação de Abelhas , Antibacterianos/farmacologia , Larva/microbiologia , Lincomicina
6.
BMC Microbiol ; 23(1): 150, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226109

RESUMO

BACKGROUND: American foulbrood (AFB) disease caused by Paenibacillus larvae is dangerous, and threatens beekeeping. The eco-friendly treatment method using probiotics is expected to be the prospective method for controlling this pathogen in honey bees. Therefore, this study investigated the bacterial species that have antimicrobial activity against P. larvae. RESULTS: Overall, 67 strains of the gut microbiome were isolated and identified in three phyla; the isolates had the following prevalence rates: Firmicutes 41/67 (61.19%), Actinobacteria 24/67 (35.82%), and Proteobacteria 2/67 (2.99%). Antimicrobial properties against P. larvae on agar plates were seen in 20 isolates of the genus Lactobacillus, Firmicutes phylum. Six representative strains from each species (L. apis HSY8_B25, L. panisapium PKH2_L3, L. melliventris HSY3_B5, L. kimbladii AHS3_B36, L. kullabergensis OMG2_B25, and L. mellis OMG2_B33) with the largest inhibition zones on agar plates were selected for in vitro larvae rearing challenges. The results showed that three isolates (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) had the potential to be probiotic candidates with the properties of safety to larvae, inhibition against P. larvae in infected larvae, and high adhesion ability. CONCLUSIONS: Overall, 20 strains of the genus Lactobacillus with antimicrobial properties against P. larvae were identified in this study. Three representative strains from different species (L. apis HSY8_B25, L. panisapium PKH2_L3, and L. melliventris HSY3_B5) were evaluated to be potential probiotic candidates and were selected for probiotic development for the prevention of AFB. Importantly, the species L. panisapium isolated from larvae was identified with antimicrobial activity for the first time in this study.


Assuntos
Actinobacteria , Paenibacillus larvae , Probióticos , Abelhas , Animais , Paenibacillus larvae/genética , Ágar , Larva , Firmicutes , Lactobacillus , Probióticos/farmacologia
7.
Int Microbiol ; 26(4): 1087-1101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37097489

RESUMO

Recent research shows that Dicranum species can be used to ameliorate the negative effects of honeybee bacterial diseases and that novel compounds isolated from these species may have the potential to treat bacterial diseases. This study aimed to investigate the efficacy of Dicranum polysetum Sw. against American Foulbrood using toxicity and larval model. The effectiveness of D. polysetum Sw. ethanol extract in combating AFB was investigated in vitro and in vivo. This study is important in finding an alternative treatment or prophylactic method to prevent American Foulbrood disease in honey bee colonies. Spore and vegetative forms of Paenibacillus larvae PB31B with ethanol extract of D. polysetum were tested on 2040 honey bee larvae under controlled conditions. Total phenolic and flavonoid contents of D. polysetum ethanol extracts were determined as 80.72 mg/GAE(Gallic acid equivalent) and 303.20 µg/mL, respectively. DPPH(2,2-diphenyl-1-picrylhydrazyl) radical scavenging percent inhibition value was calculated as 4.32%. In Spodoptera frugiperda (Sf9) and Lymantria dispar (LD652) cell lines, the cytotoxic activities of D. polysetum extract were below 20% at 50 µg/mL. The extract was shown to considerably decrease infection in the larvae, and the infection was clinically halted when the extract was administered during the first 24 h after spore contamination. The fact that the extract contains potent antimicrobial/antioxidant activity does not reduce larval viability and live weight, and does not interact with royal jelly is a promising development, particularly regarding its use to treat early-stage AFB infection.


Assuntos
Infecções Bacterianas , Paenibacillus larvae , Paenibacillus , Abelhas , Animais , Estados Unidos , Paenibacillus larvae/fisiologia , Larva/microbiologia , Etanol/metabolismo , Fenóis/farmacologia , Fenóis/metabolismo , Paenibacillus/metabolismo
8.
Molecules ; 28(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985490

RESUMO

Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious bacterial disease affecting developing honeybee larvae and pupas. In this study, a library of 24 (thio)glycosides, glycosyl sulfones, 6-O-esters, and ethers derived from d-mannose, d-glucose, and d-galactose having C10 or C12 alkyl chain were evaluated for their antibacterial efficacy against two P. larvae strains. The efficacy of the tested compounds determined as minimal inhibitory concentrations (MICs) varied greatly. Generally, dodecyl derivatives were found to be more potent than their decylated analogs. Thioglycosides were more efficient than glycosides and sulfones. The activity of the 6-O-ether derivatives was higher than that of their ester counterparts. Seven derivatives with dodecyl chain linked (thio)glycosidically or etherically at C-6 showed high efficacy against both P. larvae strains (MICs ranged from 12.5 µM to 50 µM). Their efficacies were similar or much higher than those of selected reference compounds known to be active against P. larvae-lauric acid, monolaurin, and honeybee larval food components, 10-hydroxy-2-decenoic acid, and sebacic acid (MICs ranged from 25 µM to 6400 µM). The high efficacies of these seven derivatives suggest that they could increase the anti-P. larvae activity of larval food and improve the resistance of larvae to AFB disease through their application to honeybee colonies.


Assuntos
Paenibacillus larvae , Paenibacillus , Abelhas , Animais , Estados Unidos , Ésteres/farmacologia , Sulfetos/farmacologia , Antibacterianos/farmacologia , Larva , Carboidratos/farmacologia , Sulfonas/farmacologia , Éteres/farmacologia , Glicosídeos/farmacologia
9.
J Insect Sci ; 23(2)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947033

RESUMO

American foulbrood (AFB) is a cosmopolitan bacterial disease that affects honey bee (Apis mellifera) larvae and causes great economic losses in apiculture. Currently, no satisfactory methods are available for AFB treatment mainly due to the difficulties to eradicate the tenacious spores produced by the etiological agent of AFB, Paenibacillus larvae (Bacillales, Paenibacillaceae). This present review focused on the beneficial bacteria that displayed antagonistic activities against P. larvae and demonstrated potential in AFB control. Emphases were placed on commensal bacteria (genus Bacillus and lactic acid bacteria in particular) in the alimentary tract of honey bees. The probiotic roles lactic acid bacteria play in combating the pathogenic P. larvae and the limitations referring to the application of these beneficial bacteria were addressed.


Assuntos
Paenibacillus larvae , Abelhas , Animais , Estados Unidos , Larva/microbiologia , Criação de Abelhas , Trato Gastrointestinal
10.
Res Vet Sci ; 158: 34-40, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36913910

RESUMO

Paenibacillus larvae is the causative agent of American foulbrood (AFB), a devastating disease of honeybee larvae. In the Czech Republic, two large infested regions were recognised. This study aimed to analyse P. larvae strains occurring in the Czech Republic in the years 2016-2017 and to characterise the genetic structure of their population with the use of Enterobacterial Repetitive Intergenic Consensus genotyping (ERIC), multilocus sequence typing (MLST) and whole genome sequence (WGS) analysis. The results were complemented by the analysis of isolates collected in the year 2018 in areas of Slovakia located near the Czechia-Slovakia border. ERIC genotyping revealed that 78.9% of tested isolates belonged to the ERIC II genotype and 21.1% to ERIC I genotype. MLST showed six sequence types with ST10 and ST11 being the most frequent among isolates. Within six isolates we found discrepancies in correlations between MLST and ERIC genotypes. The use of MLST and WGS analysis of isolates revealed that each of the large infested geographic regions had its own dominating P. larvae strains. We assume that these strains represented primary sources of infection in the affected areas. In addition, the sporadic presence of strains identified by core genome analysis as genetically related was unveiled in geographically distant regions suggesting possible human-mediated transmission of AFB.


Assuntos
Paenibacillus larvae , Humanos , Abelhas , Estados Unidos , Animais , Paenibacillus larvae/genética , República Tcheca/epidemiologia , Eslováquia/epidemiologia , Tipagem de Sequências Multilocus/veterinária , Larva/genética , Larva/microbiologia , Genótipo , Genômica
11.
Vet Res Commun ; 47(3): 1379-1391, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36809600

RESUMO

INTRODUCTION: Paenibacillus larvae is a spore-forming bacillus, the most important bacterial pathogen of honeybee larvae and the causative agent of American foulbrood (AFB). Control measures are limited and represent a challenge for both beekeepers and researchers. For this reason, many studies focus on the search for alternative treatments based on natural products. AIM: The objective of this study was to determine the antimicrobial activity of the hexanic extract (HE) of Achyrocline satureioides on P. larvae and the inhibitory activity on some mechanisms related to pathogenicity. MATERIAL AND METHODS: The Minimum Inhibitory Concentration (MIC) of the HE was determined by the broth microdilution technique and the Minimum Bactericidal Concentration (MBC) by the microdrop technique. Swimming and swarming motility was evaluated in plates with 0.3 and 0.5% agar, respectively. Biofilm formation was evaluated and quantified by the Congo red and crystal violet method. The protease activity was evaluated by the qualitative technique on skim milk agar plates. RESULTS: It was determined that the MIC of the HE on four strains of P. larvae ranged between 0.3 and 9.37 µg/ml and the MBC between 1.17 and 150 µg/ml. On the other hand, sub-inhibitory concentrations of the HE were able to decrease swimming motility, biofilm formation and the proteases production of P. larvae.


Assuntos
Achyrocline , Anti-Infecciosos , Paenibacillus larvae , Animais , Achyrocline/química , Ágar/farmacologia , Virulência , Larva , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia
12.
Proteomics ; 23(1): e2200146, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35946602

RESUMO

American foulbrood (AFB) is a devastating disease of honey bees. There remains a gap in the understanding of the interactions between the causative agent and host, so we used shotgun proteomics to gain new insights. Nano-LC-MS/MS analysis preceded visual description and Paenibacillus larvae identification in the same individual sample. A further critical part of our methodology was that larvae before capping were used as the model stage. The identification of the virulence factors SplA, PlCBP49, enolase, and DnaK in all P. larvae-positive samples was consistent with previous studies. Furthermore, the results were consistent with the array of virulence factors identified in an in vitro study of P. larvae exoprotein fractions. Although an S-layer protein and a putative bacteriocin were highlighted as important, the microbial collagenase ColA and InhA were not found in our samples. The most important virulence factor identified was isoform of neutral metalloproteinase (UniProt: V9WB82), a major protein marker responsible for the shift in the PCA biplot. This protein is associated with larval decay and together with other virulence factors (bacteriocin) can play a key role in protection against secondary invaders. Overall, this study provides new knowledge on host-pathogen interactions and a new methodical approach to study the disease.


Assuntos
Bacteriocinas , Paenibacillus larvae , Paenibacillus , Abelhas , Animais , Estados Unidos , Larva , Paenibacillus larvae/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Fatores de Virulência/metabolismo , Bacteriocinas/metabolismo , Paenibacillus/metabolismo
13.
Trends Microbiol ; 31(5): 521-534, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36526535

RESUMO

Paenibacillus larvae is a spore-forming bacterial entomopathogen and causal agent of the important honey bee larval disease, American foulbrood (AFB). Active infections by vegetative P. larvae are often deadly, highly transmissible, and incurable for colonies but, when dormant, the spore form of this pathogen can persist asymptomatically for years. Despite intensive investigation over the past century, this process has remained enigmatic. Here, we provide an up-to-date synthesis on the often overlooked microbiota factors involved in the spore-to-vegetative growth transition (corresponding with the onset of AFB disease symptoms) and offer a novel outlook on AFB pathogenesis by focusing on the 'collaborative' and 'competitive' interactions between P. larvae and other honey bee-adapted microorganisms. Furthermore, we discuss the health trade-offs associated with chronic antibiotic exposure and propose new avenues for the sustainable control of AFB via probiotic and microbiota management strategies.


Assuntos
Paenibacillus larvae , Probióticos , Abelhas , Animais , Estados Unidos , Larva/microbiologia , Antibacterianos , Esporos Bacterianos
14.
Benef Microbes ; 14(4): 385-400, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38661390

RESUMO

Honey bee colonies form a complex superorganism, with individual and social immune defences that control overall colony health. Sometimes these defences are not enough to overcome infections by parasites and pathogens. For that reason, several studies have been conducted to evaluate different strategies to improve honey bee health. A novel alternative that is being studied is the use of beneficial microbes. In a previous study, we isolated and characterised bacterial strains from the native gut microbiota of honey bees. Four Apilactobacillus kunkeei strains were mixed and administered in laboratory models to evaluate their potential beneficial effect on larvae and adult bees. This beneficial microbe mixture was safe; it did not affect the expression of immune-related genes, and it was able to decrease the mortality caused by Paenibacillus larvae infection in larvae and reduced the Nosema ceranae spore number in infected adult honey bees. In the present study, we aimed to delve into the impact of the administration of this beneficial microbe mixture on honey bee colonies, under field conditions. The mixture was administered in sugar syrup using lyophilised bacterial cells or fresh cultures, by aspersion or sprayed and feeder, once a week for three consecutive weeks, in autumn or spring 2015, 2017 and 2019. Colony strength parameters were estimated before the administration, and one and three months later. Simultaneously different samples were collected to evaluate the infection levels of parasites and pathogens. The results showed that administering the beneficial microbe mixture decreased or stabilised the infection by N. ceranae or Varroa destructor in some trials but not in others. However, it failed to improve the colony's strength parameters or honey production. Therefore, field studies can be a game-changer when beneficial microbes for honey bees are tested, and meticulous studies should be performed to test their effectiveness.


Assuntos
Larva , Nosema , Abelhas/microbiologia , Animais , Nosema/fisiologia , Larva/microbiologia , Microbioma Gastrointestinal , Probióticos/farmacologia , Probióticos/administração & dosagem , Mel , Paenibacillus larvae
15.
Sci Total Environ ; 845: 157123, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810895

RESUMO

Honey bees provide essential environmental services, pollinating both agricultural and natural ecosystems that are crucial for human health. However, these pollination services are under threat by outbreaks of the bacterial honey bee disease American foulbrood (AFB). Caused by the bacterium, Paenibacillus larvae, AFB kills honey bee larvae, converting the biomass to a foul smelling, spore-laden mass. Due to the bacterium's tough endospores, which are easily spread and extremely persistent, AFB management requires the destruction of infected colonies in many countries. AFB detection remains a significant problem for beekeepers: diagnosis is often slow, relying on beekeepers visually identifying symptoms in the colony and molecular confirmation. Delayed detection can result in large outbreaks during high-density beekeeping pollination events, jeopardising livelihoods and food security. In an effort to improve diagnostics, we investigated volatile compounds associated with AFB-diseased brood in vitro and in beehive air. Using Solid Phase Microextraction and Gas Chromatography Mass-Spectrometry, we identified 40 compounds as volatile biomarkers for AFB infections, including 16 compounds previously unreported in honey bee studies. In the field, we detected half of the biomarkers in situ (in beehive air) and demonstrated their sensitivity and accuracy for diagnosing AFB. The most sensitive volatile biomarker, 2,5-dimethylpyrazine, was exclusively detected in AFB-disease larvae and hives, and was detectable in beehives with <10 AFB-symptomatic larvae. These, to our knowledge, previously undescribed biomarkers are prime candidates to be targeted by a portable sensor device for rapid and non-invasive diagnosis of AFB in beehives.


Assuntos
Paenibacillus larvae , Polinização , Animais , Criação de Abelhas , Abelhas , Biomarcadores , Ecossistema , Humanos , Larva , Estados Unidos
16.
PLoS One ; 17(5): e0268142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35533189

RESUMO

Trans-generational immune priming involves the transfer of immunological experience, acquired by the parents after exposure to pathogens, to protect their progeny against infections by these pathogens. Such natural mechanisms could be exploited to prevent disease expression in economically important insects, such as the honey bee. This mechanism occurs when honey bee queens are exposed to the pathogenic bacterium Paenibacillus larvae. Here, we tested whether natural or experimental exposure to Melissococcus plutonius-another bacterium triggering a disease in honey bee larvae-reduced the susceptibility of the queen's progeny to infection by this pathogen. Because the immunological response upon pathogen exposure can lead to fitness costs, we also determined whether experimental exposure of the queens affected them or their colony negatively. Neither natural nor experimental exposure induced protection in the honey bee larvae against the deleterious effects of M. plutonius. Our results provided no evidence for the occurrence of trans-generational immune priming upon exposure of the queen to M. plutonius. Whether this lack was due to confounding genetic resistance, to unsuitable exposure procedure or to the absence of trans-generational immune priming against this pathogen in honey bees remains to be determined.


Assuntos
Enterococcaceae , Paenibacillus larvae , Animais , Bactérias , Abelhas , Enterococcaceae/genética , Larva/microbiologia
17.
Sci Rep ; 12(1): 8848, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614119

RESUMO

Paenibacillus larvae, the causative agent of American foulbrood (AFB), produces spores that may be detectable within honey. We analyzed the spore content of pooled, extracted honey from 52 large-scale (L) and 64 small-scale (S) Saskatchewan beekeepers over a two-year period (2019-2020). Our objectives were: (i) establish reliable prognostic reference ranges for spore concentrations in extracted honey to determine future AFB risk at the apiary level; (ii) identify management practices as targets for mitigation of risk. P. larvae spores were detected in 753 of 1476 samples (51%). Beekeepers were stratified into low (< 2 spores/gram), moderate (2- < 100 spores/gram), and high (≥ 100 spores/gram) risk categories. Of forty-nine L beekeepers sampled in 2019, those that reported AFB in 2020 included 0/26 low, 3/18 moderate, and 3/5 high risk. Of twenty-seven L beekeepers sampled in 2020, those that reported AFB in 2021 included 0/11 low, 2/14 moderate, and 1/2 high risk. Predictive modelling included indoor overwintering of hives, purchase of used equipment, movement of honey-producing colonies between apiaries, beekeeper demographic, and antimicrobial use as risk category predictors. Saskatchewan beekeepers with fewer than 2 spores/gram in extracted honey that avoid high risk activities may be considered at low risk of AFB the following year.


Assuntos
Mel , Paenibacillus larvae , Paenibacillus , Animais , Abelhas , Larva , Saskatchewan , Esporos Bacterianos , Estados Unidos
18.
Braz J Microbiol ; 53(3): 1645-1655, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35349126

RESUMO

Previous studies carried out in our laboratory described the antimicrobial activity of the whole hexanic extract (HE) of Achyrocline satureioides (Lam.) DC against Paenibacillus larvae, the causal agent of American Foulbrood (AFB) a disease of the honey bee larvae. In this study, the HE was partitioned into five main fractions by chromatographic techniques leading to the isolation of four known compounds: two prenylated phloroglucinol α-pyrones (1 and 3), 5,7-dihydroxy-3,8-dimethoxyflavone (gnaphaliin A) (2), and 23-methyl-6-O-demethylauricepyrone (4). Isolated compounds were further analyzed towards structural elucidation using 1H RMN and 13C RMN spectroscopic techniques. For the first time, the antimicrobial activity of the isolated compounds was evaluated against P. larvae strains by broth microdilution method and compared with that of the whole HE. Compounds 1-4 displayed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values ranging between 0.07 and 62.5 µg/mL and 0.26 and 12.5 µg/mL, respectively. The lowest MIC and MBC values were obtained with compounds 3 and 4, respectively. The antimicrobial activity of each single compound and the combination of them showed that the presence of all compounds is needed for the antimicrobial efficacy of whole HE.


Assuntos
Achyrocline , Anti-Infecciosos , Paenibacillus larvae , Paenibacillus , Achyrocline/química , Animais , Anti-Infecciosos/farmacologia , Abelhas , Hexanos/farmacologia , Larva/microbiologia , Testes de Sensibilidade Microbiana , Estados Unidos
19.
PLoS One ; 17(2): e0263602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130328

RESUMO

Three commercial honey bee operations in Saskatchewan, Canada, with outbreaks of American foulbrood (AFB) and recent or ongoing metaphylactic antibiotic use were intensively sampled to detect spores of Paenibacillus larvae during the summer of 2019. Here, we compared spore concentrations in different sample types within individual hives, assessed the surrogacy potential of honey collected from honey supers in place of brood chamber honey or adult bees within hives, and evaluated the ability of pooled, extracted honey to predict the degree of spore contamination identified through individual hive testing. Samples of honey and bees from hives within apiaries with a recent, confirmed case of AFB in a single hive (index apiaries) and apiaries without clinical evidence of AFB (unaffected apiaries), as well as pooled, apiary-level honey samples from end-of-season extraction, were collected and cultured to detect and enumerate spores. Only a few hives were heavily contaminated by spores in any given apiary. All operations were different from one another with regard to both the overall degree of spore contamination across apiaries and the distribution of spores between index apiaries and unaffected apiaries. Within operations, individual hive spore concentrations in unaffected apiaries were significantly different from index apiaries in the brood chamber (BC) honey, honey super (HS) honey, and BC bees of one of three operations. Across all operations, BC honey was best for discriminating index apiaries from unaffected apiaries (p = 0.001), followed by HS honey (p = 0.06), and BC bees (p = 0.398). HS honey positively correlated with both BC honey (rs = 0.76, p < 0.0001) and bees (rs = 0.50, p < 0.0001) and may be useful as a surrogate for either. Spore concentrations in pooled, extracted honey seem to have predictive potential for overall spore contamination within each operation and may have prognostic value in assessing the risk of future AFB outbreaks at the apiary (or operation) level.


Assuntos
Abelhas/microbiologia , Mel/microbiologia , Paenibacillus larvae/fisiologia , Esporos Bacterianos/isolamento & purificação , Doenças dos Animais/diagnóstico , Doenças dos Animais/epidemiologia , Doenças dos Animais/prevenção & controle , Animais , Antibacterianos/uso terapêutico , Criação de Abelhas/estatística & dados numéricos , Colapso da Colônia/microbiologia , Colapso da Colônia/prevenção & controle , Surtos de Doenças , Análise de Alimentos , Infecções por Bactérias Gram-Positivas/diagnóstico , Infecções por Bactérias Gram-Positivas/epidemiologia , Infecções por Bactérias Gram-Positivas/prevenção & controle , Mel/análise , Paenibacillus larvae/isolamento & purificação , Saskatchewan/epidemiologia , Estações do Ano
20.
J Vet Med Sci ; 84(3): 390-399, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35082220

RESUMO

Paenibacillus larvae and Melissococcus plutonius are the causative agents of American and European foulbroods of honey bees, respectively. Since their virulence and resistance to disinfectants differ depending on the genotypes/phenotypes of the strains, the discrimination of strain types is important for the effective control of these diseases. Methods to detect and differentiate pathogens in honey are useful for surveying the contamination status of beehives/apiaries. In the present study, we selected a sequence (GenBank accession no. FI763267) as the specific target for enterobacterial repetitive intergenic consensus (ERIC) II-type P. larvae strains for the first time and developed a novel multiplex PCR assay that precisely distinguishes between the major types of foulbrood pathogens (ERIC I and II P. larvae and typical and atypical M. plutonius) in one reaction. In addition, we found that commercially available kits designed for DNA extraction from Mycobacterium in feces efficiently extracted DNA from foulbrood pathogens in honey. Using the multiplex PCR assay and DNA extraction kits, all the targeted types of P. larvae and M. plutonius were detected in honey spiked with the pathogens at a concentration of 100 bacterial cells/strain/ml. Moreover, 94% of the Japanese honey samples examined in the present study were contaminated with one or more types of the foulbrood pathogens. These results indicate that the newly developed methods are useful for detecting foulbrood pathogens in honey. The epidemiological information obtained by these methods will contribute to the effective control of foulbroods in apiaries.


Assuntos
Paenibacillus larvae , Animais , Abelhas , Enterococcaceae/genética , Japão , Larva/microbiologia , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase Multiplex/veterinária , Paenibacillus larvae/genética , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...